
Theory for Understanding Transformers:
An Overview of Current Research

Honam Wong 1 Yicheng Wang 1 Chinghei Mok 1 Yuhao Zhang 1

Abstract

Transformers are widely used in machine learn-
ing and have played a pivotal role in driving ad-
vancements across various domains. This project
aims to explore the current theoretical research
on Transformers and gain a deeper understanding
of the reasons behind their success. We begin by
reviewing the current work analyzing the standard
Transformer architecture, focusing on training dy-
namics and expressiveness. Then, we move on to
discuss the theoretical analysis of Transformers
applied to other areas, such as Computer Vision
and Graph, explaining why they continue to suc-
ceed in learning such specific structures. Lastly,
we introduce theoretical work on in-context learn-
ing and some work on building white-box trans-
former. We hope our survey can inspire further
research to understand the practical success of
Transformers.

1. Introduction
Transformer-based models have been widely applied in di-
verse applications such as natural language processing and
computer vision, showcasing state-of-the-art performance
(Vaswani et al., 2017b; Dosovitskiy et al., 2021). While
these practical successes are evident and many empirical
explorations are present (Child et al., 2019; Dehghani et al.,
2018; Kitaev et al., 2020), it is interesting to further investi-
gate the theoretical aspects of transformers to comprehend
their capabilities fully.

The report structure is as follows. First, we revisit and de-
fine the standard structure of transformer in a mathematical
way (check Appendix A), and then introduce the several
pathways to understand it theoretically, i.e. optimization
perspective, expressiveness perspective, then we give brief
introduction to how Transformer is applied to Computer

1Department of Computer Science, The Hong Kong University
of Science and Technology. Correspondence to: Honam Wong
<hnwongaf@connect.ust.hk>.

Vision, Graph, and in-context learning, and how and why
the transformer can still achieve phenomenal success in
these fields. Lastly, we introduce Yi Ma’s work on fol-
lowing Transformer’s architecture to develop a white-box
transformer where every step inside is mathematically un-
derstandable and interpretable(Yu et al., 2023).

2. Optimization
We can analyze how Transformer learns from the optimiza-
tion prospective, which means fine-grained analysis of the
training process. Due to difficulty in analyzing dynamics
of compositions of multiple non-linear layers, many cur-
rent work simplifies the setting to one layer only (Tian et al.,
2023a; Fu et al., 2023). The work (Tian et al., 2023a) models
the dynamics of the optimizaiton process using differential
equations, and discovers the scan-and-snap phenomenon
(which is also verified in the experiment), in which the at-
tention weight gets sparser in a O(log n) rate and after a
certain period, the weight looks freezed as the rate drops
to O(log log n) (check Appendix B for details). The main
drawback of this paper is that many unrealistic assumptions
are imposed such as no residual connections, infinite token
length etc. to simplify the analysis. Recently, their follow-
up work (Tian et al., 2023b) which extends the single-layer
analysis to multiple layers and avoid many unrealistic as-
sumptions.

Another lines of work analyzes in terms of the optimization
geometry (Tarzanagh et al., 2023b;a), they show gradient
descent converges in direction to a max-margin solution
that separates locally-optimal tokens from non-optimal ones.
This helps further investigation into Transformer success-
fully learns through the lens of optimization.

3. Expressiveness
While transformers perform very well in many designed
scenarios, for example machine translation, we further want
to know its true capability. Similar to the Universal Approx-
imation Theorem on neural networks, we want to know to
what extend is theoretically doable to a transformer model.
There are many scales to measure the learning ability of
transformers, and we have chosen the following scales:

1

Theory for Understanding Transformers

1. Ability to approximate arbitrary sequence-to-sequence
functions

2. Turing completeness

3. Mechanistic Interpretability

The significance of this is that we will know the limits of
transformers and thus design new models to get around the
limitations. Also note that mechanistic interpretability is
a slightly different measure, which will be explained in its
section.

3.1. Universal Approximation

We see in Proposition C.3 that transformers without po-
sitional encoding are “permutation-equivariant”, i.e. the
permutation of the input does not affect the output. The
question is then, is it possible to simulate such kind of
sequence-to-sequence functions to arbitrary precision? As
it turns out, by (Yun et al., 2020), it is possible with just
2 heads of size 1, and a feed-forward layer with 4 hidden
nodes under the Lp norm. The way to do this is as follows

1. Approximate f with piece-wise constant functions

2. Approximate the piece-wise functions with modified
transformers

3. Approximate the modified transformer with actual
transformers

If we also account for transformers with positional encoding,
we can also approximate sequence-to-sequence functions
that are not permutation-equivariant using a similar method
and contextual mappings. However, it is restricted to con-
tinuous functions defined on compact domains. For details,
please see Appendix C.2.

3.2. Turing Completeness

The proof of transformers’ Turing completeness revolves
around construction of a transformer that can simulate a
Turing machine. As a reminder, denote Q has the set of
all possible states, Σ as the alphabet, a Turing machine
M = (δ, q, F) consists of

1. An internal state q ∈ Q

2. A set of final states F ⊂ Q which the machine halts
when reached

3. A transition function δ : Q × Σ → Q × Σ × {left,
right} that tells the machine what to write and where
to move on each step

And an input tape S ∈ Σ∗ on which the machine work on.

In order to be Turing complete, we need the transformer
to be able to simulate δ and store the states somewhere.
Luckily, in a transformer, the output dimension does not
need to be the same as the input dimension, and if we restrict
the type of programs to ones that halt in a finite amount of
time, it is possible to use each output dimension as one step
of the program.

As described by (Pérez et al., 2021), it is possible to simulate
any Turing machine using Transformers with

1. 1 encoder layer

2. 3 decoder layers

3. Hard attention (−|⟨u⃗, v⃗⟩|)

4. Embedding space of dimension 2|Q|+ 4|Σ|+ 11

The construction focuses heavily on the decoder (please
refer to Appendix C) since it can output arbitrary length (see
Figure 1).

3.3. Mechanical Interpretability

Mechanical Interpretability differs from expressiveness in
that instead of measuring what a model can do, we measure
whether a model understands what it is doing. Please refer
to Appendix C.3.

4. Transformer applied to Other Areas
The standard transformer model has been incredibly suc-
cessful in the field of natural language processing. However,
it is intriguing to understand how this model is able to cap-
ture patterns in diverse types of data, including images and
graphs. In the following sections, we will explore additional
research that aims to characterize its capacity to learn these
specific data forms.

4.1. Computer Vision

ViT (Dosovitskiy et al., 2021) is similar to Transformer but
it splits image into fixed-size patches and feed as tokens
(Architecture illustrated in Figure 2), and its performance
surpasses CNN in major experiments. But why does it
achieve superior performance even though Transformer ar-
chitecture is not originally designed for Computer Vision
tasks? While there exists some empirical work trying to ex-
plore the reason behind (Raghu et al., 2021; Melas-Kyriazi,
2021; Trockman & Kolter, 2023), there also exists other
theoretical work trying to characterize such phenomenon.
(Li et al., 2023a) finds that Vision Transformer specifically
learns spatially localized patterns (like CNN), and (Jelassi
et al., 2022) theoretically analyzes Vision Transformer with

2

Theory for Understanding Transformers

Figure 1. Visualization of the construction by (Pérez et al., 2021).

Figure 2. ViT Architecture. Credit to the authors (Dosovitskiy et al., 2021).

one-layer attention and gives Sample Complexity, which
is positively correlated with the inverse of the fraction of
label-relevant tokens, the token noise level, and the initial
model error.

4.2. Graph

There have been many works that adopt Transformers or the
attention mechanism to message passing neural networks
(MPNN) (Gilmer et al., 2017), for example, Graph Attention
Network (Veličković et al., 2018). These models usually in-
corporate attention signal into the message passing process.

However, such methods may have the following limitations:

1. May inherit limitations in expressiveness of MPNNs.

2. Cannot fully utilized techniques developed for standard
Transformers.

3. Desgined for graph specificity and may not be that

general.

The TokenGT paper (Kim et al., 2022) discussed the possi-
bility of using pure transformer as an expressive encoding
model for graph data.

Given a graph with features on nodes and edges, the goal is
to predict certain graph-level feature representation.

TokenGT aims to come up with a tokenization method which
takes in a raw graph and outputs a sequence of tokens pre-
serving the structure information. Note that, unlike the posi-
tional encoding separated from word embeddings for natural
language, TokenGT incorporates the structure information
of the graph (not exactly equivalent to position encodings)
into the tokenization process and feeds the token sequence
into a standard Transformer. The architecture is illustrated
in Figure 3 and will be detailed in Appendix D.1.1.
Theorem 4.1 (Corollary 2). TokenGT (a Transformer on
node and type identifiers with a specific configuration) is at

3

Theory for Understanding Transformers

Figure 3. TokenGT Architecture. Credit to the authors (Kim et al., 2022).

least as powerful as k-WL graph isomorphism test and is
more expressive than all message-passing GNNs.

To prove this result, the paper first show that pure self-
attention on the specifically designed tokens can accurately
approximate any equivariant linear basis operator (Maron
et al., 2019) on graphs. This leads to the comparison of ex-
pressiveness between TokenGT and WL test. Additionally,
the paper extend this to order-k TokenGT for hypergraphs.

4.3. Language Model

As we know, GPT models are still based on Transform-
ers (Brown et al., 2020), research analyze its theoretical
capacity by analyzing its performance its performance in
in-context learning (Dong et al., 2023). (Dai et al., 2023)
shows it implicitly performs gradient descent and (Bai et al.,
2023) shows Transformer can implicitly perform some sta-
tistical algorithms like least squares, ridge regression, Lasso,
learning generalized linear models.

There also exists an interesting work which analyzes Chain
of Thought theoretically by modelling the tasks into Arith-
metic, Equation Solving, and Dynamic Programming, and
applying circuit complexity theory to model and explain
effectiveness of CoT (Feng et al., 2023).

5. White-box Transformer
Transformers (Vaswani et al., 2017a) is notorious for being
black-box as we could not fully understand what it does
inside. To address this issue, Ma Yi proposed a White-box
transformer-like architecture known as CRATE (Yu et al.,
2023), which aims to produce fully mathematically inter-
pretable representations throughout the learning process.

As a brief introduction (details refer to Appendix E), this ar-
chitecture provides iterative unrolling optimization schemes

to optimize the sparse rate reduction objective:

argmin
f∈F

EZ [R
c(Z;U[K])︸ ︷︷ ︸
compression

+ ∥Z∥0 −R(Z)︸ ︷︷ ︸
sparsification

]

The first compression term is to minimize the inter-class dis-
tances while the second sparsification term is to maximize
the intra-class distances in the dataset. This may seem like
representation learning (Bengio et al., 2013) but with the
class label.

The experiment shows that CRATE can learn the desired
compressed and sparse representations on large-scale real-
world datasets and achieve a good performance in various
tasks.

Despite its potential, the CRATE transformer still faces cer-
tain challenges. In experimental comparisons, it failed to
outperform the ViT-S model (Arnab et al., 2021). Addi-
tionally, the implementation of the CRATE transformer did
not align well with the theoretical concepts presented in the
paper, raising concerns about its practical applicability.

In summary, while the CRATE transformer offers a promis-
ing solution to the lack of interpretability in transformers, its
current limitations hinder its effectiveness. Further research
and improvements are necessary to enhance its performance.

6. Summary
We have surveyed various directions into understanding
Transformers theoretically, including analyzing its training
process, and its expressiveness. We also examine other theo-
retical analysis into Transformers applied to other forms of
data. In the end, we examine Yi Ma’s attempt on designing a
mathematically interpretable transformer-like architecture.

We hope our overview can provide guidance to people inter-
ested in doing research on investigating reason behind the
success of Transformer.

4

Theory for Understanding Transformers

References
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M.,

and Schmid, C. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 6836–6846, 2021.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection, 2023.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Chan, K. H. R., Yu, Y., You, C., Qi, H., Wright, J., and Ma,
Y. Redunet: A white-box deep network from the principle
of maximizing rate reduction. The Journal of Machine
Learning Research, 23(1):4907–5009, 2022.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can gpt learn in-context? language models
implicitly perform gradient descent as meta-optimizers,
2023.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B.,
Sun, X., Xu, J., Li, L., and Sui, Z. A survey on in-context
learning, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought:
A theoretical perspective, 2023.

Fu, H., Guo, T., Bai, Y., and Mei, S. What can a single
attention layer learn? a study through the random features
lens, 2023.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Thirty-fourth International Conference on Ma-
chine Learning, 2017.

Jelassi, S., Sander, M., and Li, Y. Vision transformers prov-
ably learn spatial structure. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 37822–37836. Curran Associates, Inc., 2022.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and
Hong, S. Pure transformers are powerful graph learners.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 14582–14595.
Curran Associates, Inc., 2022.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Li, H., Wang, M., Liu, S., and Chen, P.-Y. A theoretical
understanding of shallow vision transformers: Learning,
generalization, and sample complexity. In The Eleventh
International Conference on Learning Representations,
2023a.

Li, S., Song, Z., Xia, Y., Yu, T., and Zhou, T. The closeness
of in-context learning and weight shifting for softmax
regression, 2023b.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In International
Conference on Learning Representations, 2019.

Melas-Kyriazi, L. Do you even need attention? a stack of
feed-forward layers does surprisingly well on imagenet,
2021.

5

Theory for Understanding Transformers

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is turing-
complete. Journal of Machine Learning Research, 22
(75):1–35, 2021.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and
Dosovitskiy, A. Do vision transformers see like convolu-
tional neural networks? In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak, S.
Transformers as support vector machines, 2023a.

Tarzanagh, D. A., Li, Y., Zhang, X., and Oymak, S. Max-
margin token selection in attention mechanism, 2023b.

Tian, Y., Wang, Y., Chen, B., and Du, S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. 2023a.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. Joma:
Demystifying multilayer transformers via joint dynamics
of mlp and attention. 2023b.

Trockman, A. and Kolter, J. Z. Patches are all you need?
Transactions on Machine Learning Research, 2023. ISSN
2835-8856.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017a.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017b.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Yu, Y., Chu, T., Tong, S., Wu, Z., Pai, D., Buchanan,
S., and Ma, Y. Emergence of segmentation with

minimalistic white-box transformers. arXiv preprint
arXiv:2308.16271, 2023.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

6

Theory for Understanding Transformers

A. Standard Transformer Structure
This section serves as a very abstract description of the Transformer model. We first define some notations used

1. V , an embedding space where each vector inside represent some kind of meaning, and dimV = d

2. ΣI and ΣO, the alphabet of the input and output

3. S ∈ Σ∗
I , the input to the transformer

4. S′ ∈ Σ∗
O, the output of the transformer

5. X = (x⃗1, . . . , x⃗n) where x⃗i ∈ V , n is fixed

6. Z = (z⃗1, . . . , z⃗n) where z⃗i ∈ V

7. Y = (y⃗1, . . . , y⃗m) where y⃗i ∈ V , m is dynamic, usually controlled by a seed

The rough idea of a transformer is a chain of maps in the following fashion

S
Embedder7−−−−−−→ X

Encoder7−−−−−→ Z
Decoder7−−−−−→ Y

Embedder−1

7−−−−−−−−→ S′

A.1. Encoder (X 7→ Z)

Essentially what an encoder does is extract the meaning of its input X by performing some linear transformation on X , and
give it to the decoder for generating the output. The way a transformer does this is by passing X though h different trained
linear maps that we call “attention” simultaneously, then return their “sum”.

Encoder : X
Attention7−−−−−−→ {Ai}hi=1

∑
7−→ Z

In production, we chain ℓ different encoder layers together and use the return value of the last one as Z.

X
Encoder17−−−−−−→ X1

Encoder27−−−−−−→ · · · Encoderℓ−17−−−−−−−−→ Xℓ−1
Encoderℓ7−−−−−−→ Z

It is worth noting that X , Xi and Z all belong to V n, so Encoderi ∈ End(V n).

A.2. Decoder (Z 7→ Y)

Similar to the encoder, the decoder also maps tuples in V to tuples in V , but the dimension of input and output can be
different. It also accept the output from the encoder Z as parameters. And similar to the encoder, the decoder also has an
attention mechanism.

Decoder : Z
Attention7−−−−−−→ {Bi}hi=1

∑
7−→ Z ′ Attention+Z7−−−−−−−−→ {Ci}hi=1

∑
7−→ Y

Similar to the encoder, we can also chain up multiple decoder layers

Z
Decoder17−−−−−−→ Z1

Decoder27−−−−−−→ · · · Decoderℓ−17−−−−−−−→ Zℓ−1
Decoderℓ7−−−−−−→ Y

A.3. Attention

The attention mechanism is the core of Transformers. The attention weights are computed using a mechanism known as the
scaled dot-product attention. The input X is mapped into a query vector Q, a set of key vectors K = (k⃗1, k⃗2, . . . , k⃗n) and a
set of value vectors V = (v⃗1, v⃗2, . . . , v⃗n), and then concatenated back into a tuple of vectors in the embedding space V ,
essentially extracting information from the input, refine it, and put it back.

Attention : X
⟨,⟩7−→ (Q,K, V)

∑
7−→ A

7

Theory for Understanding Transformers

B. Fined-grained Analysis of the training process
We give more details on explaining the paper (Tian et al., 2023a) here, a one-layer setting is considered for simplifying the
analysis as follows, where U = [u1, u2, · · ·uM]T is the token embedding matrix, ûT =

∑T−1
t=1 btTuxt = UTXT bT , where

btT is defined as exp(uxTWQWT
Kuxt/

√
d)∑T−1

t=1 exp(uxTWQWT
Kuxt/

√
d)

, then the normalized version ũT = UTLN(XT bT), the objective is the max

entropy loss i.e. maxWK ,WQ,WV ,U J = ED[uT
xT+1

WV ũT − log
∑

l exp(u
T
l WV ũT)].

The author parameterize the two layers, namely decoder Y = UWT
V UT ,and self-attention layer Z = UWQW

T
KUT , similar

parametrization also appears in other work (Jelassi et al., 2022), (Li et al., 2023b). Then, the author derives the training
dynamics of Y and Z as a differential equation.

Theorem B.1 (Dynamics of Decoder and Attention layer).

Ẏ = ηY LN
(
X⊤bT

)
(xT+1 −α)

⊤
, Ż = ηZxT (xT+1 −α)

⊤
Y ⊤ P⊥

X⊤bT

∥X⊤bT ∥2
X⊤ diag (bT)X

Note that several assumptions are given to facilitate the analysis i.e.

1. No positional encoding and residual connections

2. Sequence length T → ∞

3. Learning rate of decoder Y larger than self-attention layer Z (ηY >> ηZ)

4. Other technical assumptions

The paper characterizes distinct and common tokens formally in the concept of sequence classes. At initialization, the
attention logit is 0, then ˙zml < 0 for common token l, and > 0 for distinct token l, which leads to the ”suppression” of
common tokens (Theorem 2). Note that zml(t) grows faster with larger P(l|m,n), which leads to winner-emergence – the
rapid increase of contextual sparsity, the rate is bounded given in Theorem 3 of the paper i.e:

Theorem B.2 (Relative Gain). Relative gain rl/l′|n(t) :=
c̃2l|n(t)

c̃2
l′|n(t)

has a closed form:

rl/l′|n(t) = rl/l′|n(t)χl(t)

8

Theory for Understanding Transformers

If l0 is the dominant token, rl0/l|n(0) > 0 for all l ̸= l0 then

e2f
2
nl0

Bn(t) ≤ χl0(t) ≤ e2Bn(t)

where Bn(t) ≥ 0 monotonously increases, and Bn(0) = 0.

Further, Bn(t)’s rate is given and has different properties before and after a state transition as follows:

Theorem B.3 (Two stages). When t → ∞,

Bn(t) ∼ ln(C0 + 2K
ηZ
ηY

ln2(
MηY t

K
))

There are two stages i.e.

Attention Scanning: When training starts, the attention weight gets sparser, Bn(t) = O(ln t).

Attention Snapping: When t ≥ t0 = O(2K lnM
ηY

), Bn(t) = O(ln ln t), the rate gets much smaller, and this remarks the final
stage where the attention appears to frozen.

Empirically, experiment in the paper does demonstrate that attention weight is getting sparser in both the 1-layer and 3-layer
setting.

9

Theory for Understanding Transformers

C. Expressiveness of Transformer
C.1. Turing Completeness

The following section follows the formulation, with some simplification, used in (Pérez et al., 2021). We shall start with the
definitions used.

Definition C.1. For a string w ∈ Σ∗
I and a set of desired vectors F ⊂ V is accepted by a sequence-to-sequence function N

if N(w) = (y⃗1, y⃗2, . . . , y⃗m) and y⃗m ∈ F.

Definition C.2. The set of all strings accepted by a sequence-to-sequence function N is called its language, denoted as LN .

Note that the definition of being accepted only depends on the last output vector y⃗m. The motivation behind this is that we
try to mimic the definition of a Turing machine, i.e. treating the output m-tuple as the history of states, and the last one as
the final state. We want to find a family N of sequence-to-sequence functions that, together, contains all the strings accepted
by a Turing machine.

C.1.1. POSITIONAL ENCODING

A transformer, without positional encoding, is almost a function that is invariant on permutations of the input.

Proposition C.3. We define

1. The function prop(a,w) is the ratio of a ∈ ΣI in w ∈ Σ∗
I

2. The function PropInv(w) = {u ∈ Σ∗
I : prop(a,w) = prop(a, u) for all a ∈ ΣI}, which is the set of all strings that is a

permutation of strings with same alphabet ratio as w

It follows that u ∈ PropInv(w) =⇒ T (w) = T (u) where T is a transformer without positional encoding.

This property is followed by

1. The order-invariant regular language L = {w ∈ {a, b}∗ : w has even number of a} cannot be accepted by a transformer

2. The non-regular language S = {w ∈ {a, b}∗ : w has strictly more a than b} can be accepted by a transformer

Therefore it is necessary that we include positional encoding in the model in order for it to be Turing complete.

C.1.2. PROOF OF TURING COMPLETENESS

Let M be a Turing machine we want to simulate, denote

1. q(i) be the state of M at step i

2. s(i) be the symbol read at step i

3. v(i) be the symbol written to at step i

4. m(i) be the direction in which the head moves during step i

Then δ(q(i), s(i)) = (q(i+1), v(i),m(i)) represents the transition done by step i, and if we can simulate this function with a
transformer, we are done.

For the encoder, we try to construct such that

1. Attention: score(u⃗, v⃗) = −|⟨u⃗, v⃗⟩|

2. Embedding space V with size 2|Q|+ 4|Σ|+ 11 that looks something like this for v⃗ ∈ V :

v⃗ = (q⃗1, s⃗1, x1, q⃗2, s⃗2, x2, . . . , x5, s⃗3, x6, s⃗4, x7, x8, . . . , x11)

10

Theory for Understanding Transformers

3. Embedding function f(s) = (0, . . . , 0, 0, . . . , 0, s, 0, 0⃗, 0, 0, . . . , 0)

4. Positional encoder: pos(i) = (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 1, i, 1
i ,

1
i2)

5. Encoder (Ke, V e) where Ke = (k⃗1, . . . , k⃗n) and V e = (v⃗1, . . . , v⃗n), and

(a) k⃗i = (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, i,−1, 0, 0)

(b) v⃗i = (0, . . . , 0, 0, . . . , 0, s⃗i, i, 0⃗, 0, 0, . . . , 0)

Lemma C.4. Let q⃗ ∈ V such that q⃗ = (. . . , . . . , 1, j, . . . , . . .), where . . . means the value is arbitrary,

Att(q⃗) = (0, . . . , 0, 0, . . . , 0, α(j), β(j), 0⃗, 0, 0, . . . , 0)

where β(i) = min{i, n} and α(i) = sβ(i) .

For the decoder, we desire the output Y = (y⃗1, . . . , y⃗m) be

V ∋ y⃗i =

(
q(i), s(i),m(i−1), 0, . . . , 0, 0, . . . , 0, 1, (i+ 1),

1

i+ 1
,

1

(i+ 1)2

)
Further, we give it a seed vector z⃗0 = (qinit,#, 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0), similar to initializing a Turing
machine.

Lemma C.5. There exists a 3-layer decoder which does the following:

Att(y⃗i,Ke, V e) + y⃗i =

(
q(i), s(i),m(i−1), 0, . . . , 0, α(i+1), β(i+1), 0⃗, 0, 1, (i+ 1),

1

i+ 1
,

1

(i+ 1)2

)
7→

(
0, . . . , 0, q(i+1), v(i+1),m(i),m(i−1), 0, 0, α(i+1), β(i+1), 0⃗, 0, 1, (i+ 1),

1

i+ 1
,

1

(i+ 1)2

)
7→

(
0, . . . , 0, q(i+1), v(i+1),m(i),m(i−1),

c(i+1)

i+ 1
,
c(i)

i+ 1
, α(i+1), β(i+1), 0⃗, 0, 1, (i+ 1),

1

i+ 1
,

1

(i+ 1)2

)
7→

(
0, . . . , 0, q(i+1), v(i+1),m(i),m(i−1),

c(i+1)

i+ 1
,
c(i)

i+ 1
, α(i+1), β(i+1), v(ℓ(i+1)), ℓ(i+ 1), 1, (i+ 1),

1

i+ 1
,

1

(i+ 1)2

)
7→

(
q(i+1), s(i+1),m(i), 0, . . . , 0, 0, . . . , 0, 1, i+ 2,

1

i+ 2
,

1

(i+ 2)2

)
= y⃗i+1

where c(i+1) =
∑i

j=1 m
(j), the displacement of the Turing machine head; ℓ(i) is the last time when the machine head

pointed at c(i). The first 3 7→ each is a decoder layer.

Therefore, we can simulate Turing machine, and thus transformers are Turing complete. The detailed constructions can be
found in (Pérez et al., 2021).

C.2. Universal Approximators of Sequence-To-Sequence Functions

C.2.1. FORMULATION

The paper (Yun et al., 2020) formulates the Transformer block as follows, with layer normalization omitted to simply the
analysis:

Transformer(X) = Attn(X) + MLP(Attn(X))

Attn(X) = X+

h∑
i=1

Wi
OW

i
V X · σ[(Wi

KX)TWi
QX],

MLP(Attn(X)) = W2 · ReLU(W1 · Attn(X) + b11⃗
T
n) + b⃗21⃗

T
n .

11

Theory for Understanding Transformers

C.2.2. THEORY

Main theorem:
Proposition C.6 (Claim 1). A Transformer block is a permutation equivariant (PE) map f : Rd×n → Rd×n, i.e., for any
permutation matrix P, we have f(XP) = f(X)P.

Note that X here is the immediate input to the Transformer block. More specifically, let S be the raw token vectors of the
input sentence, and E be the positional encodings. Then, if X = S (without positional encodings), then f is PE in the
sentence; if X = S+E (with positional encodings), then f not PE in the sentence but in the resulting S+E.

In the following analysis, we first investigate the Transformer block f and extend the result to the case in which positional
encodings are added in the input.
Theorem C.7 (Theorem 2). Let 1 ≤ p < +∞. For any continuous PE function with compact support (we denote this class
by FPE), there exists a Transformer network that universally approximates it w.r.t. the Lp function norm. Formally, for any
ϵ > 0, for any f ∈ FPE, there exists a Transformer network g such that ∥f − g∥p ≤ ϵ.

Then the following theorem further considers the positional encodings.
Theorem C.8 (Theorem 3). Let 1 ≤ p < +∞.For any continuous map on compact domain (we denote this class by FCD),
there exists a Transformer network with positional encodings that universally approximates it. Formally, for any ϵ > 0, for
any f ∈ FCD, there exists a Transformer network with positional encodings g such that ∥f − g∥p ≤ ϵ.

C.2.3. PROOF OF THEOREM 2

The proof of Theorem 2 goes in three steps:

1. Approximate FPE with PE piece-wise constant functions FPE(δ).

2. ⋆ Approximate FPE(δ) with modified Transformers.

3. Approximate modified Transformers with (original) Transformers.

We will not show the details of these steps. Instead, we introduce the notion of contextual mapping and a related result that
may helpful in understanding how Transformers are bridged with these special functions (step 2).

We first define the PE piece-wise constant function class FPE(δ). Let grid Gδ := {0, δ, . . . , 1− δ}d×n. Then

FPE(δ) := {f : X 7→
∑
L∈Gδ

AL1{X ∈ SL}|f is PE ,AL ∈ Rd×n},

where SL is the cube ∈ [0, 1]d×n of length δ located at L: SL := {Y|L ≤ Y ≤ L+ δ entry-wise}. Intuitively, the grid Gδ

partitions [0, 1]d×n into cubes of length δ and f assigns a constant to points in each cube.
Definition C.9 (Contextual Mapping). Let L ⊆ Rd×n be a finite set. A map q : L → Rd×n is a contextual mapping if:

1. For any L ∈ L, the n entries in q(L) are distinct: q differentiates every position in a sentence.

2. For any L,L′ ∈ L, L ̸= L′, all entries of q(L) and q(L′) are distinct: A token will have different value in different
context.

Lemma C.10 (Lemma 6 (informal)). There exist a function ga : Rd×n → Rd×n composed of a certain number of self-
attention layers and a vector u⃗ ∈ Rd such that q(·) := uT ga(·) : G̃δ → R1×n is a PE contextual mapping for a subset
G̃δ ⊆ Gδ that contains almost all elements of Gδ .:

1. the same

2. For any L,L′ ∈ L, L is not a permutation of L′, all entries of q(L) and q(L′) are distinct.

Finally, a group of feed-forward layers in the modified Transformer network can map elements of the contextual embedding
q(L) to the desirable values, i.e., the output of f ∈ FPE(δ) on the input X.

12

Theory for Understanding Transformers

C.2.4. PROOF OF THEOREM 3

The proof of Theorem 3 also goes in the similar three steps:

1. Approximate FCD with piece-wise constant functions FCD(δ) on compact domain.

2. ⋆ Approximate FCD(δ) with modified Transformers with positional encodings.

3. Approximate modified Transformers with (original) Transformers with positional encodings.

Here we only show the key construction for step 2. Assume, w.l.o.g., that X ∈ [0, 1]d×n and choose

E =

0 1 . . . n− 1
...

...
. . .

...
0 1 . . . n− 1

 .

Then, we want to show that attention layers (followed by u⃗T (·)) can implement a contextual mapping on the input X = S+E.

C.3. Mechanistic Interpretability of Transformer

Specialised transformers show promising sign of artificial general intelligence, and the question is, can transformers actually
“learn” concepts? For example, ChatGPT is trained with text, yet it is able to perform simple addition of numbers. To proof
that transformers are capable of learning any concept, we must understand the whole transformer as a function and derive
the property using mathematics. However, multi-layer transformers are too complicated to analyse, thus we try doing the
following

1. Show that one-layer and two-layer transformers are able to match patterns

2. Find the necessary conditions such that we can extend the result in 1 to larger models

3. Verify the conditions in 2 by experiment

The article by (Elhage et al., 2021) explained in-depth how “0”, 1, and 2 layers transformers can be described in terms
of linear algebra, which also eased the analysis of mechanistic interpretability as it revealed pattern matching abilities in
few-layers transformers. In a subsequent article by (Olsson et al., 2022), the term “induction head” was introduced to
describe and explain more abstract pattern matching. Extensive experiments were carried out to verify claims that support
the argument.

Since any summaries of the 2 articles will be a gross simplification, we will not repeat what was there. For more details,
please do visit (Elhage et al., 2021) and (Olsson et al., 2022) for their brilliant works.

13

Theory for Understanding Transformers

D. Theoretical understanding of other variants of Transformer
D.1. TokenGT

D.1.1. ARCHITECTURE

TokenGT generates one token (a vector) for every node and edge and the order of the token sequence can be arbitrary. Let V
be the vertex set and E be the edge set. Define n = |V |,m = |E|. Let XV ∈ Rn×C be the node feature matrix, where the
vector X⃗v is the feature for the node v. Similarly, XE ∈ Rm×C is the edge feature matrix.

Every token consists of three parts:

1. The given feature vector: X⃗v or X⃗e.

2. Structure identifier: supposed to (implicitly) indicate the structural information.

3. Type identifier: tells whether it is a node or an edge.

Structure identifiers: Each node is associated with an identifier vector P⃗u and the identifier vectors for all nodes should be
mutually orthogonal. The matrix collecting all the identifier vectors is called the identifier matrix P. Then:

• For each node v ∈ V , its structure identifier is [P⃗u; P⃗u].

• For each edge (u, v) ∈ E, its structure identifier is [P⃗u, P⃗v].

The [;] notation above represents concatenation of vectors. Intuitively, the dot product of two structure identifiers reflect
the connectivity of the edges / nodes the they represent: Consider an edge (u, v) (assume u ̸= v) and a node k. [Pu;Pv] ·
[Pk;Pk] = Pu ·Pk +Pv ·Pk = 1 iff k ∈ {u, v} and 0 otherwise. However, it is up to the encoder (which is a standard
Transformer in this paper) whether such information can be well captured.

Type identifier: Two distinct and trainable vectors E⃗V , E⃗E ∈ Rde .

Then, the tokens are defined by:

• For each node u ∈ V , its token is [Xu;Pu;Pu; E⃗
V].

• For each node (u, v) ∈ E, its token is [X(u,v);Pu;Pv; E⃗
E].

For the choices of structure identifiers, the paper experimented with Orthogonal Random Features (ORFs) and Laplacian
Eigenvectors (Lap). It claimed that Lap provides a kind of graph positional information and performs better compared to
ORFs. Lap can be viewed as a generalization of sinusoidal positional embeddings for NLP transformers.

D.1.2. THEORY

Here are the building blocks of the theorem.

Definition D.1 (Definition 1). A k-IGN Fk ∈ Rnk×d0 → R can be written as a composition equivariant linear layers,
activation functions and an MLP:

Fk = MLP ◦ Lk→0 ◦ L(T)
k→k ◦ σ ◦ · · · ◦ σ ◦ L(1)

k→k,

where L represents a equivariant linear layer (see below)

Definition D.2 (Definition 2). An equivariant linear layer can be written as combination of equivariant basis tensors (applied
to the input).

From the similarity between the attention mechanism and the equivariant linear layer in the basis tensor form, the paper
showed the following:

Proposition D.3 (Lemma 1). A self-attention can approximate any equivariant basis tensor.

14

Theory for Understanding Transformers

And this leads to the conclusions of the paper:

Theorem D.4 (Theorem 1). A transformer layer with certain number (bell-2k) of self-attention heads can approximate an
equivariant layer.

Theorem D.5 (Theorem 2). A stack of transformer layers (followed by some other functions) can approximate a k-IGN.

15

Theory for Understanding Transformers

E. Attempt to white-box transformer
We elaborate Yi Ma’s line of work here:

E.1. Rethinking purpose of NN: Information Bottleneck Theory

We take the classification problem as an example, machine learning models are trying to do the following two steps:

x
f(x,θ)7−−−−→ z(θ)

g(z)7−−→ y

In which z(θ) means a representation of input x. This formula means that the model uses the encoder f to get a representation
of the input, then uses this representation as while as a downstream classifier g to handle the whole process.

According to the information bottleneck(IB) theory, the representation that which model learns is to optimize :

maxθ∈ΘIB(x, y, z(θ)) = I(z(θ), y)− βI(x, z(θ)), β > 0

In the above function, I(z, y) = H(z)−H(z|y) means the mutual information of z, y. I(z) is the Shannon Entropy of z.
Thus to optimize the first term means to learn more mutual information between the representation and the output, and the
second term means to learn less mutual information between the representation and the input. This means learning features
involve selecting input information while simultaneously narrowing the distance between the input and output information.

This theory points out the existing problem of the gradient descent algorithm: the representation learned from data is related
to the downstream task, which means the representation may suffer a data loss when the downstream task changes. Which
has been proved by the experiments.

E.2. Objective: Maximal Coding Rate Reduction (Chan et al., 2022)

Classification problems and clustering problems are essentially the same. In a classification problem, for each data point, the
model extracts several features that potentially differentiate it from other data points, forming a representation space. Then,
this low-dimensional representation space is mapped to the label (output) space, which is essentially a labeled clustering
process.

Therefore, to achieve good classification performance, we need to increase the distance between points belonging to different
classes while reducing the distance between points of the same class. This concept is remarkably similar to the idea of
contrastive learning, but in the presence of labeled data. From an information theory perspective, it means compressing
the information content of data points of the same class as much as possible while ensuring distinguishability between
different classes. From a linear algebra viewpoint, it involves within-class discrimination: features of the same class/cluster
should be highly compressed in a low-dimensional linear subspace, and between-class discrimination: features of different
classes/clusters should reside in highly unrelated linear subspaces. Following this line of thought, if we can calculate the
number of bits required to encode the entire dataset, we can determine the size of the space needed to faithfully represent the
dataset without loss. This, in turn, helps us establish appropriate distances for within-class and between-class comparisons.
According to the paper given by MaYi from TPAMI’07, the following function can measure the least bits we should use to
represent a dataset with a given loss rate ϵ:

L(X, ϵ)
.
= (

m+D

2
) log det(I +

D

mϵ2
XXT)

Following this function, Ma Yi derived following function: To maximize this target function, which also name ”Maximial
Coding Rate Reduction(MCR2). We can straightforwardly understand this with the picture. As the figureE.2 shows, assume
the dashed circle represents the size of the subspace needed for the entire dataset. The more blue balls there are, the better
the feature compression result. This is because the total number of blue and green balls represents the spatial scale of the
entire dataset R, and the number of green balls represents the sum of the space required for each class R. Therefore, the
blue balls represent the redundant space scale ∆R. When MCR2 was first introduced in a paper, it was combined with
ResNet and essentially modified the loss function of ResNet. The specific details of its usage are not elaborated here. The
experimental results were impressive, as it significantly improved the robustness of the model compared to the cross-entropy
loss function (CE).

16

Theory for Understanding Transformers

Professor Ma pointed out that although an information-theoretic perspective was employed, it was still a black-box model
that required improvement. Therefore, the ReduNet network was proposed to achieve a fully white-box approach.

E.3. Extension of Rate Reduction algorithm: CRATE (Yu et al., 2023)(white-box transformer)

The overview of the Model is shown in the Figure E.3 Among them, the compression layer is called MSSA, which
corresponds to the MHA layer in a Transformer. The specification layer is called ISTA, which corresponds to the FFN layer
in a Transformer. Given an input, the first MSSA layer produces an output, which is then passed to the first ISTA layer,
producing. This output is then passed to the second MSSA layer, producing, which is further passed to the second ISTA
layer, producing. This iteration continues until the final layer. This white box transformer-like deep network architecture is
an iterative unrolling optimization scheme to incrementally optimize the sparse rate reduction objective:

maxf∈FEZ [∆R(Z;U[K])− ∥Z∥0], Z = F (X)

Which also can be written as:
argmax

f∈F
EZ [∆R(Z;U[K])− ∥Z∥0]

= argmin
f∈F

EZ [R
c(Z;U[K])︸ ︷︷ ︸
compression

+ ∥Z∥0 −R(Z)︸ ︷︷ ︸
sparsification

] (1)

Where U[K] = (U1, ..., U[k]), Uk ∈ Rd×p are subspaces parameterizing the marginal distribution of tokens (zi)Ni=1 We can
simply understand this process as following pictures:

17

Theory for Understanding Transformers

Then, the CRATE model simply interactively uses the sparsification layer and compression to
optimize the objective function, the over view of the architecture is shown as follows.

In the above picture the layer Zl to the layer Zl+ 1
2 is doing compression while the layer Zl+ 1

2 to layer Zl+1 is used for
compression. Combining multiple above layers will get the White-box transformer which converts tokens into a compact
and sparse set of mutually independent subspaces, making classification easier.

In the training time, the CRATE apply SGD to learn(U l
[K], D

l)Ll=1 During backpropagation, U l
[K] is always the orthogonal

basis of the subspace supporting GMM in the l-th layer, while Dl is always the dictionary used for sparsification in the l-th
layer. Since each layer has these two parameters, each layer will learn different sets of parameters.

The experiment shows that CRATE performs similar accuracy with the ViT model with the similar parameters, the result
shows as follows:

18

