
Investigations on Sharpness-Aware Minimization
Honam Wong, Linying Yao, Shiyi Huang

Abstract—In this report, we aim at gaining a better under-
standing of the popular optimization algorithm - sharpness-
aware minimization (SAM), which is proposed to enhance the
generalization ability of the model. We investigate how does
the radius, metrics of the ball, and normalization affect its
generalization ability, and connect this with existing theory.

I. INTRODUCTION

Deep neural networks are powerful for various machine
learning tasks. However, they frequently struggle with poor
generalization, prompting recent extensive research into im-
proving their generalization capabilities. It is widely believed
that the sharpness of the loss surface and the generalization
performance of neural networks are closely related. Especially,
Sharpness-Aware Minimization (SAM) [1], a recently proposed
optimization technique, improves the generalization perfor-
mance by minimizing sharpness of loss landscape. The formula
is as follows:

min
x

fSAM(x) = min
x

max
∥ε∥2≤ρ

f(x+ ε). (1)

where f is the vanilla loss function.
The key intuition behind SAM is to minimize the maximum

value of the loss function within a small L2 ball with radius ρ
around the current parameter values, promoting the discovery
of wider and flatter minima, which are known to generalize
better than sharp minima. It can be derived that one iteration
of SAM is a set of two-step update equations:{

yt = xt + ρ ∇f(xt)
∥∇f(xt)∥ ,

xt+1 = xt − η∇f(yt)
(2)

In recent years, Sharpness-aware minimization (SAM) al-
ready has wide applications in many areas, such as computer
vision[2] and natural language processing[3], it would be
interesting to explore it in theory. However, many current
theoretical work either assumes diminishing or very small
radius ρ, or analyze SAM without normalization on ∇f(xt)
[4]. In this project, we conduct a comprehensive empirical
study on understanding this algorithm. To be more specific,
we aim to investigate the following research questions:

1) How does the choice of the ball radius ρ affect the
optimization process and the generalization performance
of SAM?

2) What is the impact of using different metrics (e.g., L2,
L∞) of the ball in the SAM algorithm?

3) How does normalization in 2 influence the effectiveness
of SAM?

By addressing these questions, we seek to gain a deeper
understanding of the SAM optimization algorithm. Our findings
may provide valuable insights for researchers and practitioners

aiming to improve the generalization and robustness of deep
neural networks across various domains and applications.

To conduct the experiments, we use https://github.com/
davda54/sam as our base repository and implement most of
our experiments on top of that. Unless otherwise specified, we
follow their setting, we set initial learning rate as 0.1 and we
use the step learning rate scheduler, where it maintains the
initial rate for the first 30% of epochs, then reducing it to 20%,
4%, and 0.8% of the initial rate at 30%, 60%, and 80% of the
total epochs, respectively. The momentum is set as 0.9, and
weight decay is 0.0005.

II. RADIUS OF THE BALL

Recall that in eq. 1, the objective is to minimize the
maximum value of the loss function within the small ball
with radius ρ. We are curious about how the radius ρ affects
the optimization performance of SAM. The original SAM
paper [1] only considers varying rho for ablation studies, we
investigate this further by plotting the loss and accuracy curve
and observe its performance in more details.

A. Training details and results

We vary ρ = {0.01, 0.05, 0.1, 0.5} and test their performance
on CIFAR-10 with WideResNet [5], since they are the common
combinations for testing optimization algorithm’s performance
[6][7]. We run the experiment for 200 steps each with
three different random seeds 0, 10, 42 and observe similar
phenomenon across all seeds. Our results are displayed in Fig.
1 (seed 42), other two random seeds perform similar results.
Tab. I shows our results when varing different ρ values with
three different random seeds.

(a) Accuracy (b) Loss

Fig. 1: Radius of the ball experiment with random seed 42.

https://github.com/davda54/sam
https://github.com/davda54/sam


Accuracy Loss
ρ values Mean Std Mean Std
ρ = 0.5 0.9559 0.0007 0.1143 0.0014
ρ = 0.1 0.9710 0.0008 0.0695 0.0007
ρ = 0.05 0.9717 0.0007 0.0675 0.0011
ρ = 0.01 0.9689 0.0007 0.0729 0.0017

TABLE I: Model performance with accuracy and loss

Fig. 2: Different norm Lp

B. Findings

We observe two interesting phenomenon:
First, SAM with relatively small ρ behaves similarly with

some small fluctuations. This demonstrates the insensitivity of
SAM over choice of hyperparameter ρ when it is relatively
small, the reason is suggested to be normalization by the
recent theoretical result [8]. We would also investigate into
role of normalization in Section V. However, it is interesting
to find that when ρ is very large i.e. 0.5 in the experiment,
it would have lower convergence or even divergence. It is
counter-intuitive since a larger ρ should imply it encourages
a flatter minima around the point x, which is supposed to be
improving generalization. Here is our hypothesis: recall that
yt = xt + ρ ∇f(xt)

∥∇f(xt)∥ , we suspect that a larger choice of ρ
would make yt jump out of the local minimum during the
optimization process, leading to slower convergence. More
theoretical work would be required to explore this direction.

Most theory paper assumes vanishing ρ [4], this might also
of interest to theoretically explore what will be the critical
point of ρ for divergence.

In most of the runs, there are sudden drops in eval loss
around 60 and 120 steps. We suspect this is related to the
learning rate scheduler. By previous description, there are 200
steps, and learning rate reduces to 0.01 and 0.004 from the
original 0.1 at 60 and 120 steps, which lowering learning rate
in later steps is commonly known to accelerate convergence
when it nears the minimum point.

III. METRICS OF THE BALL (Lp NORM)

Since in SAM eq. 1 the ascent step is determined by the
ball. Therefore, both of the geometry (for instance: fig 2)
and radius of the ball might affect the performance of SAM.
After discussing changing radius ρ, we are interested in how
changing the metrics of the ball affect performance of SAM.
The standard version uses L2 metric, we try changing to L∞

metrics and compare its performance with L2.

The updated ascent formula would be

yt = xt + ρ sign(∇f(xt))

A. Training details and results

The setup is similar to the Varies Rho experiment, but we
fix ρ = 0.05 as suggested by the original SAM paper [1]. We
modified the _grad_norm function to use p = ∞ instead of
p = 2 . This change calculates the gradient norm using the
infinity norm, which affects how gradients are scaled during
optimization.

(a) Accuracy (b) Loss

Fig. 3: Difference in p = ∞ and p = 2

B. Findings

With the experiments we find that using L∞ norm is worse
than L2. We could not find any theoretical work discussing
this. Informally speaking, we suspect the reason is for L2

norm, ∇f(xt)
∥∇f(xt)∥ provides more information on the geometry of

the loss landscape, while sign(∇f(xt)) can only give rough
estimate of the landscape, this also worth further theoretical
investigation.

IV. ADAPTING THE LOCAL GEOMETRY

While SAM has shown promising results in improving gener-
alization, it employs a fixed radius ball in the maximization step,
which is sensitive to the model parameter re-scaling. To address
this limitation, a variant called Adaptive Sharpness-Aware
Minimization (ASAM)[9] has been proposed. ASAM adaptively
adjusts the radius of the ball based on the curvature of the
loss landscape, allowing the optimization to better navigate
different regions and potentially find even flatter minima. To
test its performance, since different architectures have different
loss surfaces [10], we aim to compare its performance with
SAM across several architectures.

A. Training details and results

In this section, we test the optimizers SAM, ASAM
and SGD across several popular architecures: ResNet[11],
WideResNet[5], PyramidNet[12] and VGG[13]. In detail,
learning rate, momentum and weight decay are set to 0.1,
0.9 and 0.0005 respectively for SGD. For SAM, we set the
hyper-parameter ρ to 0.05 while for ASAM, we set the hyper-
parameter ρ to 2.0. Similarly, we test on three different random
seeds. Fig. 4 shows one example of our plot results. Tab. II
shows our results of the accuracy for different models.



TABLE II: Local geometry experiment results

Models SGD SAM ASAM
ResNet 0.9611(0.0004) 0.9649(0.0010) 0.9662(0.0010)
VGG 0.9427 0.1000 0.1000
WRN 0.9669(0.0032) 0.9710(0.0005) 0.9742(0.0007)
PyramidNet 0.8604(0.0025) 0.8567(0.0056) 0.8192(0.0026)

(a) Accuracy (b) Loss

Fig. 4: ASAM, SAM and SGD comparison based on WideRes-
Net with random seed 42.

B. Findings

We find that ASAM outperforms SAM and SAM outperforms
SGD in ResNet and WideResNet as we expected. In Pyramid-
Net, while SAM has close accuracy with SGD, ASAM performs
worse. This might be caused by the initial hypermeter settings
since we are using uniform hyper-parameters without tuning
for each model. Another interpretation is that ASAM might not
be better than SAM with PyramidNet without particular hyper-
parameter settings. Similar results in Table 1 of FisherSAM
[14] also suggest that the difference of accuracy between SAM
and ASAM is very small and SAM outperforms a little than
ASAM with PyramidNet. Additionally, in VGG, we surprisingly
find that both SAM and ASAM have probability to failure,
which only achieves constant 10% accuracy over epochs. This
interesting failure is similar to the issue addressed in the Table
2 of ASAM[9]. Since we have successful examples in the
different settings while we haven’t found any other paper
address this issue, we guess this problem might be caused by
difference in their loss surface, or some subtle undiscovered
internal changes, such as the distortion of the image after
channel shift.

There are also other variants of algorithms that adapt the
local geometry, we put the additional discussion in Appendix A

V. ROLE OF NORMALIZATION

Recall that in SAM there is a set of two-step update equations,
in which one of the steps involve normalization:

yt = xt + ρ
∇f(xt)

∥∇f(xt)∥
.

However, most of the existing theoretical research assumes
no normalization is applied. We are curious about whether

Fig. 5: Loss of USAM and SAM for ρ = 0.001, 0.005, 0.01

normalization is crucial, we introduce the unnormalized version
of SAM (USAM) by changing the ascent step into

yt = xt + ρ∇f(xt).

We replicate the motivating experiment of [8], we com-
pare un-normalized SAM (USAM) with SAM in the over-
parametrized matrix sensing setting, which is a simplified
setting to understand optimization behavior in overparametrized
model [15], for details of the setting we can refer to the
appendix B.

We vary ρ = 0.001, 0.005, 0.01, 0.1 to train SAM and
USAM in 10 steps and observe their performance: For small
ρ = 0.001, 0.005, 0.01, both of them manage to converge:

However, for ρ = 0.1, SAM manages to converge, but
USAM diverges to extremely large value in ρ = 0.1. We list
the value of loss function here for illustration:

steps Loss of SAM Loss of USAM
Step 1 4.714 4.872
Step 2 2.81 22.873
Step 3 1.748 70595465
Step 4 1.199 1.545e+65

TABLE III: SAM and USAM’s loss

A. Findings

This demonstrates that normalization stabilizes SAM towards
choice of ρ. We find that the theoretical result [8] also supports
this claim, which shows in the toy case - single-neuron linear
net L(x, y) = l(x, y), USAM had y2∞ >> 0 while SAM has
y2∞ = o(1).

VI. SUMMARY

In this report, we find that SAM is robust to choice of ρ when
it is relatively small, but when it gets larger it exhibits worse
performance. We also find that using L∞ metric performs worse
than using L2 metric. Moreover, we find that the performance of
Adaptive SAM and SAM might vary in different network model
architectures while the overall performance of Adaptive SAM is
better than SAM. In the last section, we compare unnormalized
SAM and vanilla SAM in the simplified matrix sensing setting,
which unveils the importance of normalization in SAM. All
these empirical investigations are either well connected with
theory, or might be interesting to explore further.



REFERENCES

[1] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” 2021.

[2] L.-H. Li and R. Tanone, “Compact convolutional transformer based on
sharpness-aware minimization for image classification,” in 2023 12th
International Conference on Awareness Science and Technology (iCAST).
IEEE, 2023, pp. 129–135.

[3] C. Na, S. V. Mehta, and E. Strubell, “Train flat, then compress: Sharpness-
aware minimization learns more compressible models,” arXiv preprint
arXiv:2205.12694, 2022.

[4] D. Si and C. Yun, “Practical sharpness-aware minimization cannot
converge all the way to optima,” 2023.

[5] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[6] S. Cong and Y. Zhou, “A review of convolutional neural network
architectures and their optimizations,” Artificial Intelligence Review,
vol. 56, no. 3, pp. 1905–1969, 2023.

[7] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[8] Y. Dai, K. Ahn, and S. Sra, “The crucial role of normalization in
sharpness-aware minimization,” 2023.

[9] J. Kwon, J. Kim, H. Park, and I. K. Choi, “Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks,”
in International Conference on Machine Learning. PMLR, 2021, pp.
5905–5914.

[10] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” 2018.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[12] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] M. Kim, D. Li, S. X. Hu, and T. M. Hospedales, “Fisher sam: Information
geometry and sharpness aware minimisation,” 2022.

[15] Y. Li, T. Ma, and H. Zhang, “Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic
activations,” 2019.

[16] T. Truong, H.-P. Nguyen, T. Pham, M.-T. Tran, M. Harandi,
D. Phung, and T. Le, “RSAM: Learning on manifolds with
riemannian sharpness-aware minimization,” 2024. [Online]. Available:
https://openreview.net/forum?id=u6Ux5OCGmW

APPENDIX

We use RTX4090 cards to run our experiments, the ex-
periments are logged using wandb, and can be replicated by
running the ‘.sh‘ files in the repository, details can be found
on ‘README.md‘.

A. Additional Discussion on local geometry

To better adapt to the local geometry of the loss landscape,
[14], [16] are proposed to utilize the information geometry
of the parameter space, by replacing SAM’s euclidean balls
with ellipsoids induced by Fisher information. It would be
interesting to investigate performance of these algorithms in
different carefully designed loss landscape in future work,
which might further inspire better optimization algorithm.

B. Overparametrized Matrix Sensing Setup

Our setup is very similar to the Appendix A of [8], as
follows:

1) Generate the true matrix by sampling each entry of
U∗ ∈ Rd×r independently from a standard Gaussian
distribution and let X∗ = U∗(U∗)T .

2) Normalize each column of U⋆ to unit norm so that the
spectral norm of U⋆ is close to one.

3) For every sensing matrix Ai (i = 1, 2, . . . ,m), sample
the entries of Ai independently from a standard Gaussian
distribution. Then observe bi = ⟨Ai, X

⋆⟩.
In particular, for the experiments, we chose r = 5, d = 100,
and m = 5dr.

We pick the largest learning rate for SGD to converge i.e.
0.5, which adheres with the practical learning rate selection.

https://openreview.net/forum?id=u6Ux5OCGmW

	Introduction
	Radius of the ball
	Training details and results
	Findings

	Metrics of the ball (Lp norm)
	Training details and results
	Findings

	Adapting the Local Geometry
	Training details and results
	Findings

	Role of normalization
	Findings

	Summary
	References
	Appendix
	Additional Discussion on local geometry
	Overparametrized Matrix Sensing Setup


